MOM-ERGOM western Baltic Sea simulations with tagging of atmospheric nitrogen deposition by EMEP

doi:10.26050/WDCC/MOMERGOMBSEMEP

Neumann, Daniel; Radtke, Hagen; Neumann, Thomas

ExperimentDOI
Summary
A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 2003 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1999 and, then, from 2000 to 2002 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx HELCOM: Helsinki Commission). A publication is in preparation.
The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Atmospheric nitrogen deposition data of 0.1° x 0.1° spatial resolution were taken from the 2018 reporting of the European Measurement and Evaluation Programme (EMEP) as presented in EMEP (2018, url: http://emep.int/publ/reports/2018/EMEP_Status_Report_1_2018.pdf) and available from the Norwegian Meteorological Institute (2018, url: http://thredds.met.no/thredds/catalog/data/EMEP/2018_Reporting/catalog.html).

Nitrogen from atmospheric deposition of nitrogen from livestock/agricultural emissions (estimated, see documentation) and from all emission sectors has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all nitrogen-containing model variables exist three times in the output: once as regular variables and once per tagged nitrogen source (total atmospheric and agriculturally-related).

The simulation was performed at the North-German Supercomputing Alliance (HLRN, project id: mvk00054, zulassung.hlrn.de/kurzbeschreibungen/mvk00054.pdf). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

Technical details:
model run on MPP1 Cluster of the HLRN-III Konrad Comlpex
each simulation performed on 527 cores distributed on 22 nodes (24 cores per node; one core on one node not used) configuration of one node:
Processor: 2x Intel Xeon E5-2695v2 CPUs (12 cores per CPU), R_peak: 230 GFlop/s
RAM: 64 GiB DDR3-1866
OS: SuSE Linux Enterprise Server (SLES) version 11
Interconnect: Cray Aries
Project
MeRamo (HBM-ERGOM western Baltic Sea simulations with tagging of atmospheric nitrogen deposition within the MeRamo project)
Contact
Dr. Thomas Neumann (
 thomas.neumann@nullio-warnemuende.de
0000-0002-5653-906X)
Spatial Coverage
Longitude 8.23 to 30.63 Latitude 53.83 to 65.93 Altitude: 0 m to -268 m
Temporal Coverage
2003-01-01 to 2014-12-31 (julian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
15.58 GiB (16724463933 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2029-07-25
Cite as
Neumann, Daniel; Radtke, Hagen; Neumann, Thomas (2019). MOM-ERGOM western Baltic Sea simulations with tagging of atmospheric nitrogen deposition by EMEP. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/MOMERGOMBSEMEP

BibTeX RIS
Description
will be provided as extra document (reference, additional info and summary)
Model: The ocean physics were simulated with the Modular Ocean Model(MOM) version 5.1 (Griffies, Fundamentals of Ocean Climate Models, 2014, https://press.princeton.edu/titles/7797.html). The whole Baltic Sea was modeled with a horizontal resolution of 3 n.m. x 3 n.m. and 134 vertical layers. A dynamic ice model simulates ice cover thickness and extent. MOM has been used and validated in several Baltic Sea studies (Neumann et al., 2015, doi: https://doi.org/10.1016/j.jmarsys.2015.08.001 Radtke et al., 2012, doi: https://doi.org/10.1029/2012JC008119 Schernewski et al., 2015, doi: https://doi.org/10.1016/j.marpol.2014.09.002).
The marine biogeochemical processes are simulated with the Ecological ReGional Ocean Model (ERGOM). It is coupled to MOM and shared the same model domain. ERGOM has been developed at the Leibniz Institute for Baltic Sea Research Warnemünde and is still under active development (Neumann, 2000, doi: https://doi.org/10.1016/S0924-7963(00)00030-0 Neumann et al., 2002, doi: https://doi.org/10.1029/2001GB001450 Kuznetsov and Neumann, 2013, doi: https://doi.org/10.1016/j.jmarsys.2012.10.011 Radtke et al., 2013, doi: https://doi.org/10.1016/j.jmarsys.2012.07.010 Neumann et al., 2015).
Description
There are not gaps in the spatial and temporal coverage. Land grid cells are indicated by missing values (-1.e+20f).

All prognostic biogeochemical model variables and a few relevant physical model variables are provided. Each nitrogen-containing prognostic variable has two counterparts with the suffixes "_atmos_tot_N" and "_atmos_agri_N" indicating the total atmosheric and livestock/agricultural-related nitrogen, respectively, in this variable.
Description
In the used ERGOM version, the biogeochemical system is represented by 31 state variables of which 26 are in the water column and 5 in the surface sediment. Basic nutrients - e.g. nitrate or phosphate- enter the system via river input, atmospheric deposition, or recycling of organic matter. They are consumed by phytoplankton including cyanobacteria. Cyanobacteria do not consume nitrate or ammonium but fixate molecular nitrogen to obtain needed nitrogen. Phytoplankton including cyanobacteria is grazed by zooplankton. Plankton respirates and dies. Dead plankton becomes detritus that sinks to the sediment. The sediment is represented by an one-layer sediment only but contains relevant sediment processes such as phosphate release under anoxic conditions or denitrification.
Description
Findable: 6 of 7 level
Accessible: 2 of 3 level
Interoperable: 3 of 4 level
Reusable: 5 of 10 level
Method
F-UJI online automated
Method Description
Checks performed by WDCC. Metrics documentation: https://www.f-uji.net/index.php?action=methods
Method Url
Result Date
2021-12-14
Description
Consistency/Data Organisation and Data Object: 4 of 5 level;
Consistency/Versioning and Controlled Vocabularies (CVs): level 4 of 5 level;
Consistency/Data-Metadata Consistency: 4 of 5 level;
Completeness/Existence of Metadata: 4 of 5 level;
Completeness/Existence of Data (Completeness and Persistence): 5 of 5 level;
Accessibility/Metadata Access by Identifier: 5 of 5 level;
Accessibility/Data Access by Identifier: 5 of 5 level;
Accuracy/Plausibility: 5 of 5 level;
Accuracy/Statistical Anomalies: 4 of 5 level
https://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=QMM_MOMERGOMBSEMEP
Method
QMM checklist manual
Method Description
Checks performed by WDCC. The criteria are documented in the 'Fitness for Use of Data Objects Described with Quality Maturity Matrix at Different Phases of Data Production'
Method Url
Result Date
2019-11-06
Result Date
2019-11-06
Description
1. Number of data sets is correct and > 0: passed;
2. Size of every data set is > 0: passed;
3. The data sets and corresponding metadata are accessible: passed;
4. The data sizes are controlled and correct: passed;
5. The spatial-temporal coverage description (metadata) is consistent to the data, time steps are correct and the time coordinate is continuous: passed;
6. The format is correct: passed;
7. Variable description and data are consistent: passed
Method
WDCC-TQA checklist
Method Description
Checks performed by WDCC. The list of TQA metrics are documented in the 'WDCC User Guide for Data Publication' Chapter 8.1.1
Method Url
Result Date
2019-11-06
Contact typePersonORCIDOrganization
-

Is compiled by

[1] Griffies, Stephen M. (2005). Fundamentals of Ocean Climate Models. https://press.princeton.edu/titles/7797.html
[2] DOI Neumann, Thomas. (2000). Towards a 3D-ecosystem model of the Baltic Sea. doi:10.1016/S0924-7963(00)00030-0
[3] DOI Neumann, Thomas; Fennel, Wolfgang; Kremp, Christine. (2002). Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment. doi:10.1029/2001gb001450
[4] DOI Kuznetsov, Ivan; Neumann, Thomas. (2013). Simulation of carbon dynamics in the Baltic Sea with a 3D model. doi:10.1016/j.jmarsys.2012.10.011
[5] DOI Radtke, Hagen; Neumann, Thomas; Fennel, Wolfgang. (2013). A Eulerian nutrient to fish model of the Baltic Sea — A feasibility-study. doi:10.1016/j.jmarsys.2012.07.010

Is documented by

[1] Norwegian Meteorological institute. (2019). EMEP MSC-W modelled air concentrations and depositions 2018 . https://thredds.met.no/thredds/catalog/data/EMEP/2018_Reporting/catalog.html
[2] EMEP. (2018). EMEP Status Report 1/2018 "Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components". http://emep.int/publ/reports/2018/EMEP_Status_Report_1_2018.pdf
[3] DOI Geyer, Beate. (2013). coastDat-2 COSMO-CLM. doi:10.1594/WDCC/coastDat-2_COSMO-CLM
[4] DOI Ménesguen, Alain; Cugier, Philippe; Leblond, Isabelle. (2006). A new numerical technique for tracking chemical species in a multi-source, coastal ecosystem, applied to nitrogen causing Ulva blooms in the Bay of Brest (France). doi:10.4319/lo.2006.51.1_part_2.0591
[5] QMM Level of doi:10.26050/WDCC/MOMERGOMBSEMEP. (2019). https://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=QMM_MOMERGOMBSEMEP
[6] DOI Neumann, Thomas; Siegel, Herbert; Gerth, Monika. (2016). A new radiation model for Baltic Sea ecosystem modelling. doi:10.1016/j.jmarsys.2015.08.001
[7] DOI Radtke, H.; Neumann, T.; Voss, M.; Fennel, W. (2012). Modeling pathways of riverine nitrogen and phosphorus in the Baltic Sea. doi:10.1029/2012jc008119
[8] DOI Schernewski, Gerald; Friedland, Rene; Carstens, Marina; Hirt, Ulrike; Leujak, Wera; Nausch, Günther; Neumann, Thomas; Petenati, Thorkild; Sagert, Sigrid; Wasmund, Norbert; Weber, Mario von. (2015). Implementation of European marine policy: New water quality targets for German Baltic waters. doi:10.1016/j.marpol.2014.09.002
[9] DOI Neumann, Thomas; Schernewski, Gerald. (2005). An ecological model evaluation of two nutrient abatement strategies for the Baltic Sea. doi:10.1016/j.jmarsys.2004.10.002

Attached Datasets ( 64 )

Details for selected entry

Additional Info

Details for selected entry
[Entry acronym: MOMERGOMBSEMEP] [Entry id: 3862866]