CMIP6 CMIP MRI MRI-ESM2-0 historical

doi:10.26050/WDCC/AR6.C6CMMRME0hi

Yukimoto, Seiji et al.

Dataset GroupDOI
Summary
These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.MRI.MRI-ESM2-0.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MRI-ESM2.0 climate model, released in 2017, includes the following components: aerosol: MASINGAR mk2r4 (TL95; 192 x 96 longitude/latitude; 80 levels; top level 0.01 hPa), atmos: MRI-AGCM3.5 (TL159; 320 x 160 longitude/latitude; 80 levels; top level 0.01 hPa), atmosChem: MRI-CCM2.1 (T42; 128 x 64 longitude/latitude; 80 levels; top level 0.01 hPa), land: HAL 1.0, ocean: MRI.COM4.4 (tripolar primarily 0.5 deg latitude/1 deg longitude with meridional refinement down to 0.3 deg within 10 degrees north and south of the equator; 360 x 364 longitude/latitude; 61 levels; top grid cell 0-2 m), ocnBgchem: MRI.COM4.4, seaIce: MRI.COM4.4. The model was run by the Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan (MRI) in native nominal resolutions: aerosol: 250 km, atmos: 100 km, atmosChem: 250 km, land: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
Project
IPCC-AR6_CMIP6 (Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets)
Contact
Dr. Seiji Yukimoto (
 yukimoto@nullmri-jma.go.jp
)

Dr. Tsuyoshi Koshiro (
 tkoshiro@nullmri-jma.go.jp
0000-0003-2971-7446)

Dr. Hideaki Kawai (
 h-kawai@nullmri-jma.go.jp
)

Dr. Naga Oshima (
 oshima@nullmri-jma.go.jp
0000-0002-8451-2411)

Dr. Kohei Yoshida (
 kyoshida@nullmri-jma.go.jp
)

Dr. Shogo Urakawa (
 surakawa@nullmri-jma.go.jp
)

Hiroyuki Tsujino (
 htsujino@nullmri-jma.go.jp
0000-0003-3336-0275)

Makoto Deushi (
 mdeushi@nullmri-jma.go.jp
0000-0002-0373-3918)

Taichu Tanaka (
 yatanaka@nullmri-jma.go.jp
)

Masahiro Hosaka (
 mhosaka@nullmri-jma.go.jp
)

Hiromasa Yoshimura (
 hyoshimu@nullmri-jma.go.jp
)

Eiki Shindo (
 eishindo@nullmri-jma.go.jp
)

Ryo Mizuta (
 rmizuta@nullmri-jma.go.jp
)

Dr. Masayoshi Ishii (
 maish@nullmri-jma.go.jp
)

Yukimasa Adachi (
 yadachi@nullmri-jma.go.jp
)
Location(s)
global
Spatial Coverage
Longitude 0 to 360 Latitude -90 to 90
Temporal Coverage
1850-01-01 to 2014-12-31 (gregorian)
Use constraints
Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Data Catalog
World Data Center for Climate
Size
1.31 TiB (1438733612340 Byte)
Format
NetCDF
Status
completely archived
Creation Date
Future Review Date
2032-12-05
Cite as
Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa (2023). IPCC DDC: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/AR6.C6CMMRME0hi

BibTeX RIS
Description
as consistent as the model(s) MRI-ESM2-0
Description
All TQA checks were passed for CMIP6 CMIP MRI MRI-ESM2-0 historical.
Method
CMIP6-TQA Checks
Method Description
Checks performed by WDCC. CMIP6-TQA metrics are documented: https://redmine.dkrz.de/projects/cmip6-lta-and-data-citation/wiki/Quality_Checks
Method Url
Result Date
2023-06-08
Contact typePersonORCIDOrganization
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Is related to

[1] DOI Wong, Suki C. K.; McKinley, Galen A.; Seager, Richard. (2022). Equatorial Pacific pCO2 Interannual Variability in CMIP6 Models. doi:10.1029/2022jg007243
[2] DOI Rivera, Paris. (2022). Evaluation of Historical Simulations of CMIP6 Models for Temperature and Precipitation in Guatemala. doi:10.1007/s41748-022-00333-x

Cites

[1] DOI Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; Mix, A.; Notz, D.; Nowicki, S.; Nurhati, I.S.; Ruiz, L.; Sallée, J.-B.; Slangen, A.B.A.; Yu, Y. (2023). Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.011
[2] DOI Lee, J.-Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C; Jones, C.; Maycock, A.; Mutemi, J.; Ndiaye, O.; Panickal, S.; Zhou,T. (2023). Future Global Climate: Scenario-Based Projections and Near-Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.006
[3] DOI Eyring, V.; Gillett, N.P.; Achuta Rao, K.M.; Barimalala, R.; Barreiro Parrillo, M.; Bellouin, N.; Cassou, C.; Durack, P.J.; Kosaka, Y.; McGregor, S.; Min, S.; Morgenstern, O.; Sun, Y. (2023). Human Influence on the Climate System. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.005
[4] DOI Doblas-Reyes, F.J.; Sörensson, A.A.; Almazroui, M.; Dosio, A.; Gutowski, W.J.; Haarsma, R.; Hamdi, R.; Hewitson, B.; Kwon, W.-T.; Lamptey, B.L.; Maraun, D.; Stephenson, T.S.; Takayabu, I.; Terray, L.; Turner, A.; Zuo, Z. (2023). Linking Global to Regional Climate Change. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.012
[5] DOI Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2023). Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.013
[6] DOI Gutiérrez, J.M.; Jones, R.G.; Narisma, G.T.; Alves, L.M.; Amjad, M.; Gorodetskaya, I.V.; Grose, M.; Klutse, N.A.B.; Krakovska, S.; Li, J.; Martínez-Castro, D.; Mearns, L.O.; Mernild, S.H.; Ngo-Duc, T.; van den Hurk, B.; Yoon, J.-H. (2023). Atlas. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.021
[7] Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; Otto, F.; Pinto, I.; Satoh, M.; Vicente-Serrano, S.M.; Wehner, M.; Zhou, B. (2021). Weather and Climate Extreme Events in a Changing Climate Supplementary Material. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. https://www.ipcc.ch/
[8] DOI Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896
[9] DOI Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; Liao, H.; Unger, N.; Zanis, P. (2023). Short-Lived Climate Forcers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.008
[10] Szopa, S.; Naik, V.; Adhikary, B.; Artaxo, P.; Berntsen, T.; Collins, W.D.; Fuzzi, S.; Gallardo, L.; Kiendler-Scharr, A.; Klimont, Z.; Liao, H.; Unger, N.; Zanis, P. (2021). Short-Lived Climate Forcers Supplementary Material. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. https://www.ipcc.ch/
[11] DOI Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; Jiang, D.; Khan, A.; Pokam Mba, W.; Rosenfeld, D.; Tierney, J.; Zolina, O. (2023). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. doi:10.1017/9781009157896.010

Is part of

[1] DOI Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa. (2019). MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. doi:10.22033/ESGF/CMIP6.6842
[2] DOI Yukimoto, Seiji; Koshiro, Tsuyoshi; Kawai, Hideaki; Oshima, Naga; Yoshida, Kohei; Urakawa, Shogo; Tsujino, Hiroyuki; Deushi, Makoto; Tanaka, Taichu; Hosaka, Masahiro; Yoshimura, Hiromasa; Shindo, Eiki; Mizuta, Ryo; Ishii, Masayoshi; Obata, Atsushi; Adachi, Yukimasa. (2023). IPCC DDC: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP. doi:10.26050/WDCC/AR6.C6CMMRME0

Is referenced by

[1] DOI Burke, Eleanor J.; Zhang, Yu; Krinner, Gerhard. (2020). Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. doi:10.5194/tc-14-3155-2020
[2] DOI Kwiatkowski, Lester; Torres, Olivier; Bopp, Laurent; Aumont, Olivier; Chamberlain, Matthew; Christian, James R.; Dunne, John P.; Gehlen, Marion; Ilyina, Tatiana; John, Jasmin G.; Lenton, Andrew; Li, Hongmei; Lovenduski, Nicole S.; Orr, James C.; Palmieri, Julien; Santana-Falcón, Yeray; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tagliabue, Alessandro; Takano, Yohei; Tjiputra, Jerry; Toyama, Katsuya; Tsujino, Hiroyuki; Watanabe, Michio; Yamamoto, Akitomo; Yool, Andrew; Ziehn, Tilo. (2020). Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. doi:10.5194/bg-17-3439-2020
[3] DOI Faye, Aissatou; Akinsanola, Akintomide Afolayan. (2021). Evaluation of extreme precipitation indices over West Africa in CMIP6 models. doi:10.1007/s00382-021-05942-2
[4] DOI Turnock, Steven T.; Allen, Robert J.; Andrews, Martin; Bauer, Susanne E.; Deushi, Makoto; Emmons, Louisa; Good, Peter; Horowitz, Larry; John, Jasmin G.; Michou, Martine; Nabat, Pierre; Naik, Vaishali; Neubauer, David; O'Connor, Fiona M.; Olivié, Dirk; Oshima, Naga; Schulz, Michael; Sellar, Alistair; Shim, Sungbo; Takemura, Toshihiko; Tilmes, Simone; Tsigaridis, Kostas; Wu, Tongwen; Zhang, Jie. (2020). Historical and future changes in air pollutants from CMIP6 models. doi:10.5194/acp-20-14547-2020
[5] DOI Zhang, Kequan; Duan, Jiakang; Zhao, Siyi; Zhang, Jiankai; Keeble, James; Liu, Hongwen. (2021). Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. doi:10.1007/s00376-021-0442-2
[6] DOI Emmenegger, Todd; Kuo, Yi-Hung; Xie, Shaocheng; Zhang, Chengzhu; Tao, Cheng; Neelin, J. David. (2022). Evaluating Tropical Precipitation Relations in CMIP6 Models with ARM Data. doi:10.1175/jcli-d-21-0386.1
[7] DOI Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Jian. (2021). Snow Depth Trends from CMIP6 Models Conflict with Observational Evidence. doi:10.1175/jcli-d-21-0177.1
[8] DOI Cai, Wenju; Yang, Kai; Wu, Lixin; Huang, Gang; Santoso, Agus; Ng, Benjamin; Wang, Guojian; Yamagata, Toshio. (2020). Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. doi:10.1038/s41558-020-00943-1
[9] DOI Su, Xiaole; Wu, Tongwen; Zhang, Jie; Zhang, Yong; Jin, Junli; Zhou, Qing; Zhang, Fang; Liu, Yiming; Zhou, Yumeng; Zhang, Lin; Turnock, Steven T.; Furtado, Kalli. (2022). Present-Day PM2.5 over Asia: Simulation and Uncertainty in CMIP6 ESMs. doi:10.1007/s13351-022-1202-7
[10] DOI Lalande, Mickaël; Ménégoz, Martin; Krinner, Gerhard; Naegeli, Kathrin; Wunderle, Stefan. (2021). Climate change in the High Mountain Asia in CMIP6. doi:10.5194/esd-2021-43
[11] DOI Vaittinada Ayar, Pradeebane; Bopp, Laurent; Christian, Jim R.; Ilyina, Tatiana; Krasting, John P.; Séférian, Roland; Tsujino, Hiroyuki; Watanabe, Michio; Yool, Andrew; Tjiputra, Jerry. (2022). Contrasting projections of the ENSO-driven CO<sub>2</sub> flux variability in the equatorial Pacific under high-warming scenario. doi:10.5194/esd-13-1097-2022
[12] DOI Singh, Charu. (2022). Intra-seasonal oscillations of South Asian summer monsoon in coupled climate model cohort CMIP6. doi:10.1007/s00382-022-06323-z
[13] DOI Zhang, Zhentao; Sun, Shuang; Zhang, Fangliang; Guo, Shibo; Guo, Erjing; Liu, Zhijuan; Zhao, Jin; Zhao, Chuang; Li, Tao; Yang, Xiaoguang. (2022). Using estimated radiation in crop models amplified the negative impacts of climate variability on maize and winter wheat yields in China. doi:10.1016/j.agrformet.2022.108914
[14] DOI Ngoma, Hamida; Ayugi, Brian; Onyutha, Charles; Babaousmail, Hassen; Sian, Kenny Lim; Iyakaremye, Vedaste; Mumo, Richard; Ongoma, Victor. (2022). Projected Changes in Rainfall Over Uganda Based on CMIP6 Models. doi:10.21203/rs.3.rs-894721/v1
[15] DOI Wang, Shizhu; Wang, Qiang; Wang, Muyin; Lohmann, Gerrit; Qiao, Fangli. (2022). Arctic Ocean Freshwater in CMIP6 Coupled Models. doi:10.1029/2022ef002878
[16] DOI Langan, Joseph A.; Bell, Richard J.; Collie, Jeremy S. (2022). Taking stock: Is recovery of a depleted population possible in a changing climate?. doi:10.1111/fog.12599
[17] DOI Rashid, Haroon; Yang, Kaijie; Zeng, Aicong; Ju, Song; Rashid, Abdur; Guo, Futao; Lan, Siren. (2021). Predicting the Hydrological Impacts of Future Climate Change in a Humid-Subtropical Watershed. doi:10.3390/atmos13010012
[18] DOI Dahlke, Flemming T.; Wohlrab, Sylke; Butzin, Martin; Pörtner, Hans-Otto. (2020). Thermal bottlenecks in the life cycle define climate vulnerability of fish. doi:10.1126/science.aaz3658
[19] DOI Weijer, W.; Cheng, W.; Garuba, O. A.; Hu, A.; Nadiga, B. T. (2020). CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation. doi:10.1029/2019gl086075
[20] DOI Morgenstern, Olaf; Kinnison, Douglas E.; Mills, Michael; Michou, Martine; Horowitz, Larry W.; Lin, Pu; Deushi, Makoto; Yoshida, Kohei; O’Connor, Fiona M.; Tang, Yongming; Abraham, N. Luke; Keeble, James; Dennison, Fraser; Rozanov, Eugene; Egorova, Tatiana; Sukhodolov, Timofei; Zeng, Guang. (2022). Comparison of Arctic and Antarctic Stratospheric Climates in Chemistry Versus No‐Chemistry Climate Models. doi:10.1029/2022jd037123
[21] DOI Zeng, Guang; Morgenstern, Olaf; Williams, Jonny H. T.; O’Connor, Fiona M.; Griffiths, Paul T.; Keeble, James; Deushi, Makoto; Horowitz, Larry W.; Naik, Vaishali; Emmons, Louisa K.; Abraham, N. Luke; Archibald, Alexander T.; Bauer, Susanne E.; Hassler, Birgit; Michou, Martine; Mills, Michael J.; Murray, Lee T.; Oshima, Naga; Sentman, Lori T.; Tilmes, Simone; Tsigaridis, Kostas; Young, Paul J. (2022). Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models. doi:10.1029/2022jd036452
[22] DOI Akinsanola, Akintomide Afolayan; Ogunjobi, Kehinde O; Abolude, Akintayo T; Salack, Seyni. (2021). Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. doi:10.1088/1748-9326/abed7a

Parent

CMIP6 CMIP MRI MRI-ESM2-0
Details

Attached Datasets ( 333 )

Details for selected entry
[Entry acronym: C6CMMRME0hi] [Entry id: 3952054]